Get Started

creative tool

Action Preventing Action

intro image

Action Preventing Action (APA) is a powerful creative thinking tool that is useful for defining customer requirements. Meeting customer needs is a crucial step in driving technological advancements. In a competitive market, successful products and services are those that customers are willing to invest in, ensuring the longevity of businesses and paving the way for future development. The APA tool is specifically designed to effectively explore customer requirements, making it the perfect choice when searching for answers to the question: What should we innovate?

What are the benefits of Action Preventing Action?

Innovation becomes valuable and successful when it addresses specific problems and satisfies potential customers. We present a unique tool for creative thinking called Action Preventing Action (APA), which is specifically designed to identify customer needs.

Our core principle is straightforward: The highest level of customer satisfaction is achieved when a supplier can prevent customers from continuing their existing activities.

As a creative thinking tool, APA helps companies accurately define customer requirements, which is a key factor in achieving business success.

Here are some scenarios where you and your team can benefit from using APA:

  • Eliminate the need for guesswork and costly, unproductive surveys.
  • Gain insights into customer behaviors and true needs.
  • Develop a strategic business plan.
  • Prioritize customer needs identification as a main activity within your R&D department.

When should you use the Action Preventing Action?

APA is a managerial creative thinking tool that helps examine the issues faced by potential customers. It involves identifying both current and future problems. A successful business understands customer needs and excels in resolving customer problems by offering relevant products and services.

Here are some situations where APA is invaluable:

  • Developing a comprehensive, long-term strategic plan for business development.
  • Defining rational pathways for departments responsible for R&D and innovation.
  • Ensuring continuous improvement of products and services.
  • Identifying promising opportunities for startup ventures.

These are just a few examples, but the APA thinking process can be creatively applied in numerous other scenarios, making it a versatile and essential tool for innovative problem-solving.

Join 1000+ users today

Speedup your innovation

Start for free now

Showcasing Successful Projects

Microelectronics

Wafer cleaning issues at the wet process

Wet cleaning is widely used in microchip manufacturing. Single wafer equipment is working as follows. A wafer rotates, and chemistry is poured from a movable nozzle. Water rinsing is performed at the end of the process. Loading of a new batch of the chemistry resulted in excursion - a strongly increased amount of defects was observed on the wafer after the processing. The project is dedicated to the failure analysis and creation of innovative solutions.

user avatar
Dr. Anatoly Agulyansky
Microelectronics

SiO2 thin film creation in Diffusion furnace - Process Functional Modeling

The process is related to microelectronics - microchip manufacturing.The purpose of the process is to create a SiO2 layer on the surface of a Si wafer. Equipment: Vertical furnace to heat the wafers in the Q2 atmosphere and perform oxidation on the wafer surface. Process: The oxidation occurs on the front side and on the back side of the wafer Requirements: Create a SiO2 thin layer with a certain thickness and low sigma - low standard deviation of the thickness between the wafers and within the waferFailure: Wafers from the lower zone have higher thickness and significantly higher within wafer sigma (standard deviation of the thickness within the wafer)

user avatar
Dr. Anatoly Agulyansky
Microelectronics

Optimizing IC Interconnection: A Functional Approach to Innovation (Stay updated on the project's progress)

Semiconductor devices are becoming more complex and expensive. But what exactly are we paying for when we buy a computer, cellphone, or any device containing a microchip? It’s not for radically new functions—the core components remain the same: transistors and interconnections. According to Moore’s law, transistors are getting smaller, with more interconnection layers added, making the manufacturing process longer and more costly.In reality, we’re paying for the inability of engineers to efficiently solve engineering challenges.This project leverages System Functional Modeling (SFM) to analyze the IC interconnection layer and Process Functional Modeling (PFM) to evaluate its manufacturing process. These analyses aim to deepen our understanding of both the device and the production process, generating innovative solutions for cost reduction and improved efficiency.

user avatar
Dr Anatoly Agulyansky
Environment

Laundry clothes - example for PFM

The project aims to analyze the washing, drying, and ironing of clothes. Use Process Functional Modeling for the analysis. This is an example of how to use Process Functional Modeling and see this tool's power.

user avatar
Dr. Anatoly Agulyansky
Environment

Targets splinters after trapshooting contaminate the nature - how to solve this problem

A good example of how to use 40 Inventive Principles for ideas generation.

user avatar
Dr. Anatoly Agulyansky
Mechanics

Functional Modeling of a Vacuum Cleaner: A Pathway to Innovation

This project showcases how functional modeling can drive innovation by analyzing and simulating various versions of a vacuum cleaner. By studying the functional model, you will experience firsthand how the Functional Modeling creative thinking tool helps identify opportunities for improvement and generate innovative ideas for the next generation of products.Through this example, you’ll learn how to dissect the functionality of a vacuum cleaner, revealing ways to enhance its performance, efficiency, and user experience—ultimately paving the way for future innovations.

user avatar
Dr. Anatoly Agulyansky
Microelectronics

Wafer breakage at flash heating

Flash heating of a wafer is widely used in microchip manufacturing. The purpose of the process is to prevent the diffusion of ions and atoms. During the flash process, a wafer breakage occurs. The project's purpose is to learn and understand the mechanism of the wafer breakage and propose the solutions to prevent the wafer breakage

user avatar
Dr. Anatoly Agulyansky
Chemistry

מניעת עיבוי על העדשות - רוני עוז ותומר קליין

?כיצד נוכל למנוע הצטברות של אדים על גבי העדשה בתנאי סביבה שונים כדי לשפר את הראייה והבטיחות

user avatar
Roni Oz